INTRODUCTION TO IMAGE FILTERING, IMAGE DENOISING, IMAGE INTERPOLATION

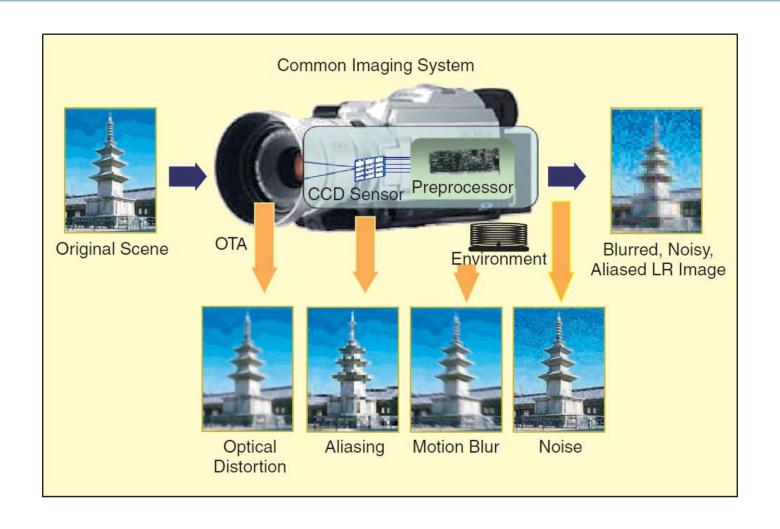
Speaker: Hsin-Hui Chen

Date: 2013.9.5 (Thurs)

Outline

- Introduction
- Image Filtering (Basic concepts)
- Image Denoising
- Image interpolation (super resolution)

Common Image Acquisition System



Computational Problems in Imaging

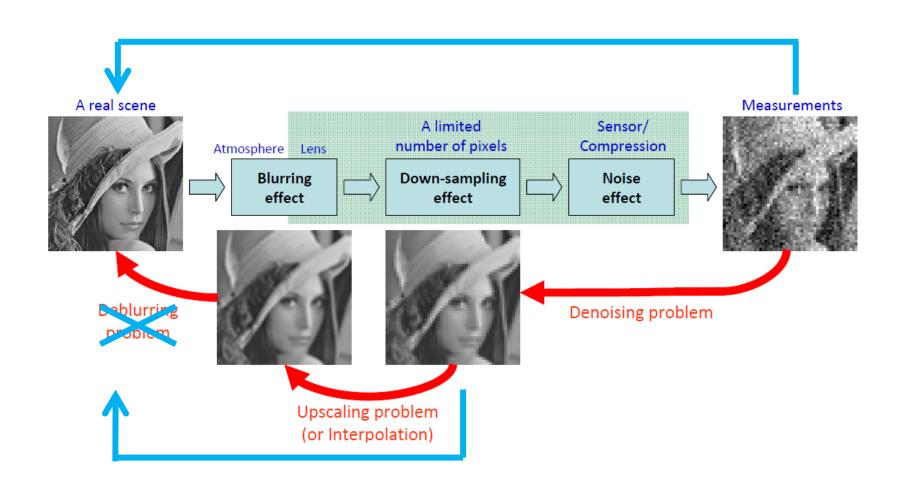


Image Denoising

□ Gaussian noise with σ =15, 25, 35

Desired denoised image

Image Interpolation

Desired interpolated image

Evaluation Metrics (1/3)

- □ PSNR
- □ 30dB

PSNR (dB) =
$$10 \cdot \log_{10} \left[\frac{\sum_{x=1}^{N_x} \sum_{y=1}^{N_y} (255)^2}{\sum_{x=1}^{N_x} \sum_{y=1}^{N_y} (f(x,y) - \hat{f}(x,y))^2} \right] = 10 \cdot \log_{10} \left[\frac{N_x N_y (255)^2}{\sum_{x=1}^{N_x} \sum_{y=1}^{N_y} (f(x,y) - \hat{f}(x,y))^2} \right]$$

$$= 10 \cdot \log_{10} \left[\frac{255^2}{MSE} \right]$$

Mean Squared Error (MSE)

$$MSE = \frac{\sum_{x=1}^{N_x} \sum_{y=1}^{N_y} \left(f(x, y) - \hat{f}(x, y) \right)^2}{N_x N_y}, \quad N_x \text{ is the number of pixels of the image in x direction} \\ N_y \text{ is the number of pixels of the image in y direction}$$

Evaluation Metrics (2/3)

SSIM
$$(x,y) = \frac{(2\mu_x\mu_y + c_1)(2\sigma_{xy} + c_2)}{(\mu_x^2 + \mu_y^2 + c_1)(\sigma_x^2 + \sigma_y^2 + c_2)}$$

- μx the average of x;
- μy the average of y;
- σ_x^2 the variance of x;
- σ²_y the variance of y;
- σ_{xy} the covariance of x and y:
- $c_1 = (k_1 L)^2$, $c_2 = (k_2 L)^2$ two variables to stabilize the division with weak denominator;
- L the dynamic range of the pixel-values (typically this is 2#bits per pixel_1);
- k₁ =0.01 and k₂ =0.03 by default.

Evaluation Metrics (3/3)

■ Why SSIM matters?



Example of Simulation Results

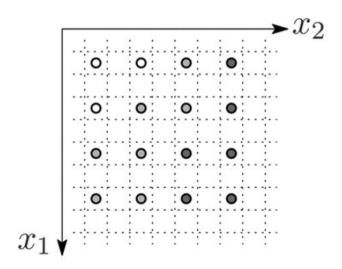
Image denoising results

The PSNR (dB) and SSIM results of the denoised images at different noise levels and by different schemes.

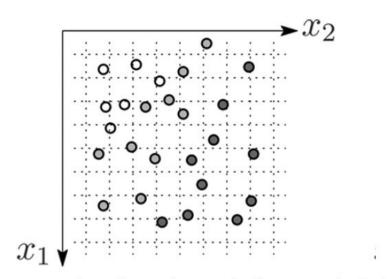
Methods	[10]	[8]	[14]	[20]	Proposed
Lena					
σ = 10	33.1(0.9154)	33.2(0.9160)	33.5(0.9203)	33.9(0.9272)	33.7(0.9243)
σ = 20	29.2(0.8455)	29.4(0.8514)	29.7(0.8571)	30.2(0.8699)	29.7(0.8605)
σ =30	27,2(0,7878)	27.5(0.7964)	27.8(0.8055)	28.3(0.8231)	27.6(0.8066)
σ = 40	25.7(0.7315)	26.0(0.7466)	26.2(0.7504)	27.3(0.7727)	26.0(0.7578)
Cameraman					
σ = 10	33.2(0.9170)	33.7(0.9307)	33.9(0.9334)	34.4(0.9399)	34.1(0.9356)
σ = 20	29.1(0.8449)	29.6(0.8744)	29.9(0.8810)	30.6(0.8962)	30.1(0.8902)
σ =30	26.8(0.7945)	27.5(0.8307)	27.9(0.8426)	28.5(0.8655)	27.8(0.8558)
σ =40	25.3(0.7310)	26.0(0.7806)	26.5(0.8048)	27.1(0.8303)	26.2(0.8211)
House					
σ = 10	34.4(0.8791)	34.8(0.8809)	35.5(0.8960)	36.2(0.9143)	35.6(0.9012)
σ = 20	31.3(0.8199)	32.1(0.8374)	32.7(0.8458)	33.3(0.8553)	32.5(0.8471)
σ =30	29.4(0.7829)	30.2(0.8066)	30.7(0.8137)	31.6(0.8319)	30.4(0.8185)
σ = 40	28.1(0.7409)	28.9(0.7708)	29.1(0.7771)	30.7(0.8065)	28.9(0.7891)
Paint					
σ = 10	33.0(0.9227)	33.5(0.9319)	33.5(0.9293)	33.7(0.9329)	33.6(0.9311)
σ = 20	29.0(0.8513)	29.6(0.8687)	29.6(0.8655)	29.9(0.8731)	29.5(0.8683)
σ =30	26.9(0.7897)	27.5(0.8110)	27.5(0.8091)	27.7(0.8196)	27.2(0.8088)
σ = 40	25.6(0.7408)	26.0(0.7616)	26.0(0.7599)	26.6(0.7711)	25.6(0.7569)
Monarch					
σ = 10	33.1(0.9442)	33.6(0.9527)	33.5(0.9501)	33.9(0.9577)	34.2(0.9594)
σ = 20	28.8(0.8912)	29.5(0.9076)	29.6(0.9077)	30.1(0.9222)	30.0(0.9202)
σ = 30	26.5(0.8370)	27.1(0.8583)	27.4(0.8663)	28.0(0.8850)	27.4(0.8769)
σ =40	25.0(0.7916)	25.7(0.8179)	25.9(0.8260)	26.6(0.8462)	25.9(0.8378)
Barbara					
σ = 10	31.6(0.9241)	31.6(0.9246)	32.3(0.9349)	32.7(0.9420)	32.5(0.9378)
σ = 20	27.4(0.8314)	27.2(0.8316)	28.4(0.8646)	28.9(0.8819)	28.5(0.8716)
σ = 30	25.1(0.7472)	25.0(0.7475)	26.3(0.7919)	26.8(0.8165)	26.2(0.8028)
$\sigma = 40$	23.5(0.6696)	23.5(0.6718)	24.7(0.7262)	25.0(0.7444)	24.5(0.7378)

Image Interpolation

Regularly and irregularly sampled data



Interpolation of regularly sampled data



Reconstruction from irregularly sampled data

The Difference between Image Interpolation and Super Resolution (1/2)

- □ **Interpolation** only involves upsampling the low-resolution image, which is often assumed to be aliased due to direct down-sampling.
- □ **Super resolution** aims to address undesirable effects, including the resolution degradation, blur and noise effects. Super resolution usually involves three major processes which are upsampling (interpolation), deblurring, and denoising.

The Difference between Image Interpolation and Super Resolution (2/2)

□ The formulation of an LR image (Image Interpolation):

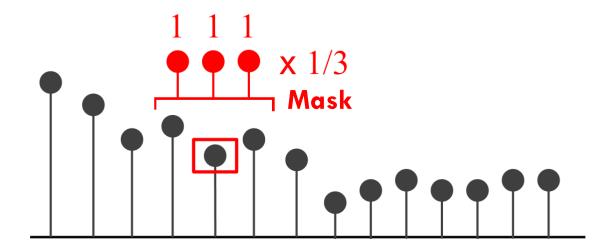
$$\mathbf{I}^l = \mathbf{I}^h \downarrow_s$$

□ The formulation of an LR image (Super Resolution):

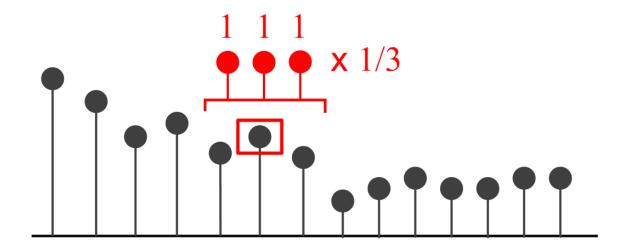
$$\mathbf{I}^l = (\mathbf{I}^h * g) \downarrow_s$$

where D is the down-sampling matrix, and *g* is the point spread function (PSF) which is generally a smoothing kernel.

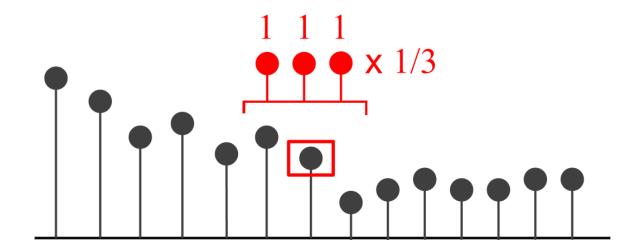
- Example: 1-D signal
- Mask, kernel, window...



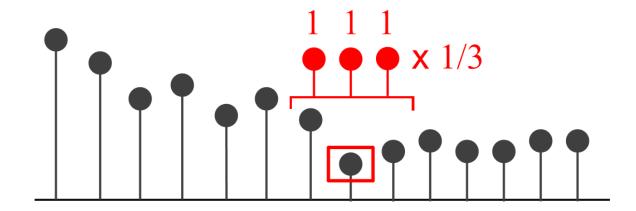
Example: 1-D signal



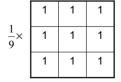
Example: 1-D signal

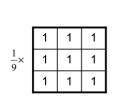


Example: 1-D signal



- Example: 2-D image
- □ 3x3 mask





100	100	100	100	100
100	144	167	145	100
100	167	200	168	100
100	144	166	144	100
100	100	100	100	100

100	100	100	100	100
100	200	205	203	100
100	195	200	200	100
100	200	205	195	100
100	100	100	100	100

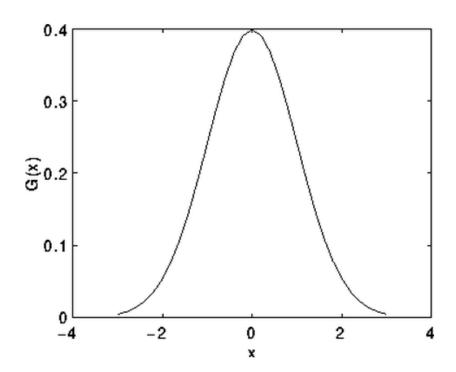
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		1	2	1
1 2 1	$\frac{1}{16} \times$	2	4	2
		1	2	1

100	100	100	100	100
100	156	176	158	100
100	174	201	175	100
100	156	175	156	100
100	100	100	100	100

Gaussian Filter

■ Example: 1-D case

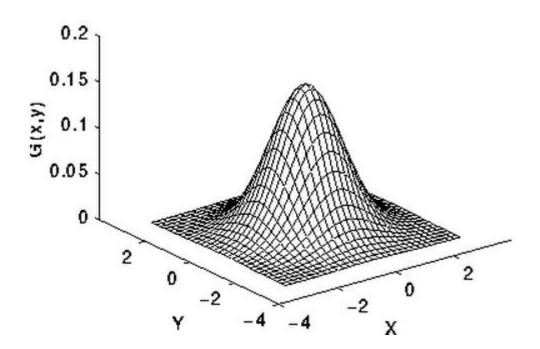
$$G(x) = rac{1}{\sqrt{2\pi}\sigma}e^{-rac{x^2}{2\sigma^2}}$$



Gaussian Filter

■ Example: 2-D case

$$G(x,y)=rac{1}{2\pi\sigma^2}e^{-rac{x^2+y^2}{2\sigma^2}}$$



Gaussian Filter

- Discrete approximation
- Example

	1	4	7	4	1
	4	16	26	16	4
<u>1</u> 273	7	26	41	26	7
	4	16	26	16	4
	1	4	7	4	1

.006 .061 .242 .383 .242 .061 .006

Image Denoising

□ Example: 3x3 mask

\mathbf{w}_1	W_2	W ₃
W_4	W ₅	\mathbf{w}_6
W ₇	\mathbf{w}_8	W 9

$$\sum_{i=1}^{9} w_i = 1$$

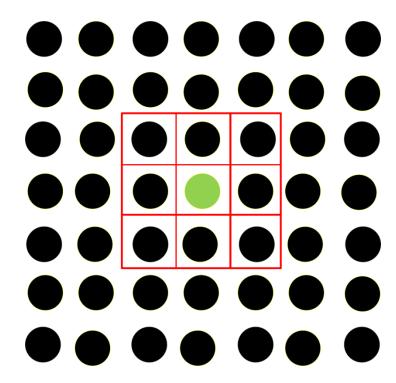
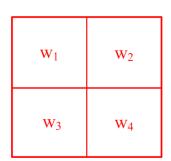


Image Interpolation

□ Example: 2x2 mask



$$\sum_{i=1}^{4} w_i = 1$$

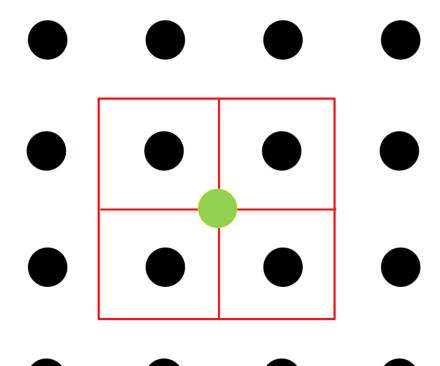
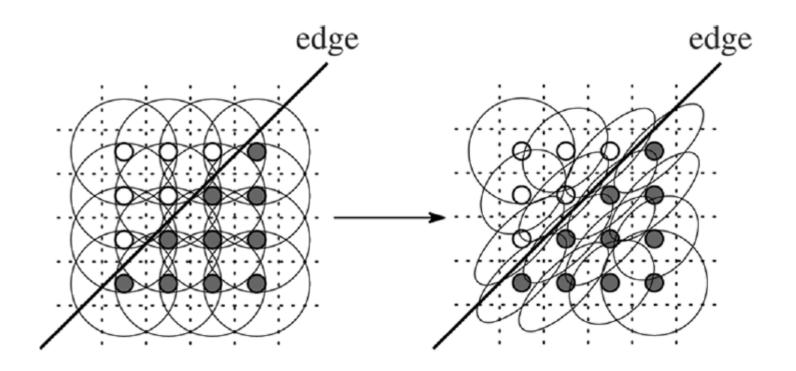


Image Interpolation

■ Example: 2X

Classic and Data-adapted Kernels

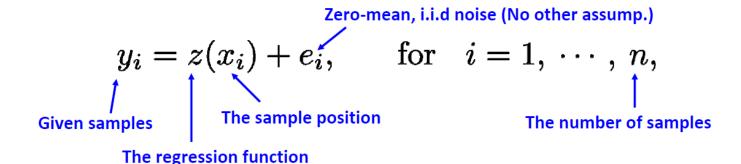


	1	4	7	4	1
	4	16	26	16	4
<u>1</u> 273	7	26	41	26	7
	4	16	26	16	4
	1	4	7	4	1

	1	4	7	4	1
<u>1</u> 273	4	16	26	16	4
	7	26	41	26	7
	4	16	26	16	4/
	1	4	7	4	1

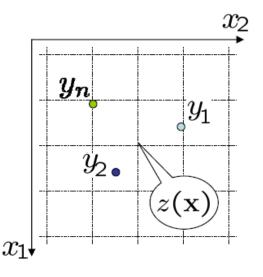
The Common Framework

The data measurement model



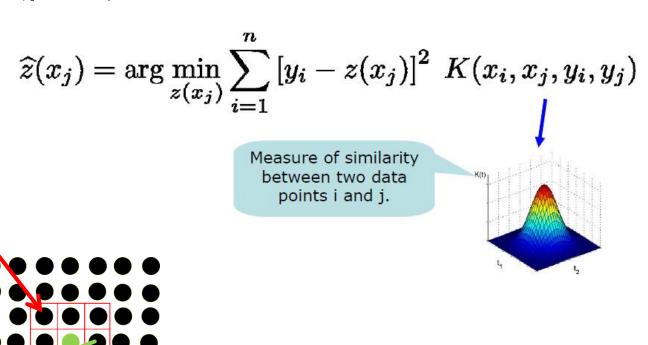
□ For 2-D image

$$x_i = \begin{bmatrix} x_{i,1} \\ x_{i,2} \end{bmatrix}$$



The Common Framework

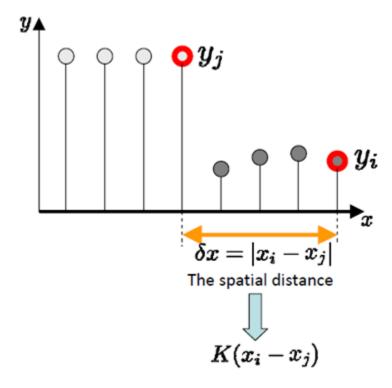
□ The (point) estimate:

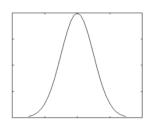


 $z(x_i)$

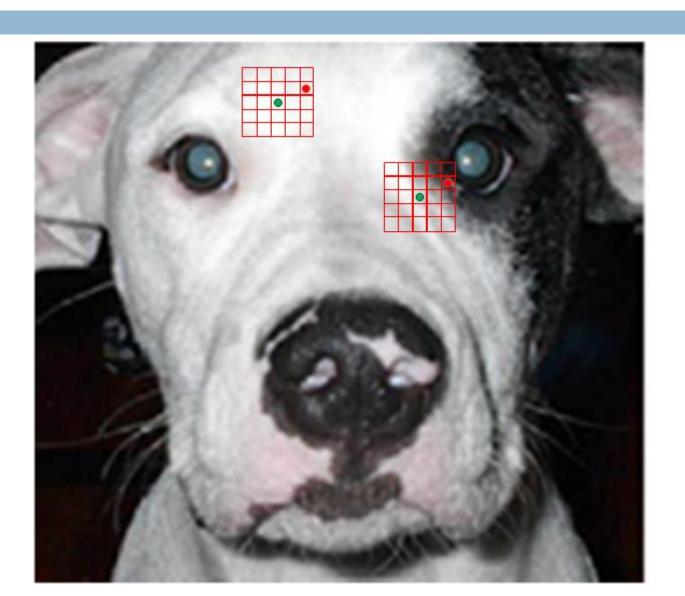
Classical Gaussian Linear Filter

$$K(x_i, x_j, y_i, y_j) = \exp\left(\frac{-\|x_i - x_j\|^2}{h_x^2}\right)$$





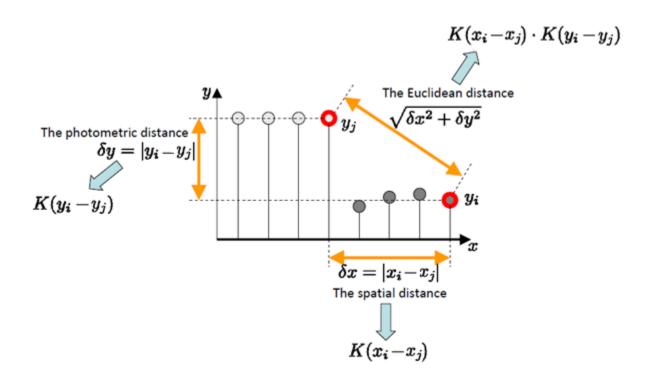
Classical Gaussian Linear Filter



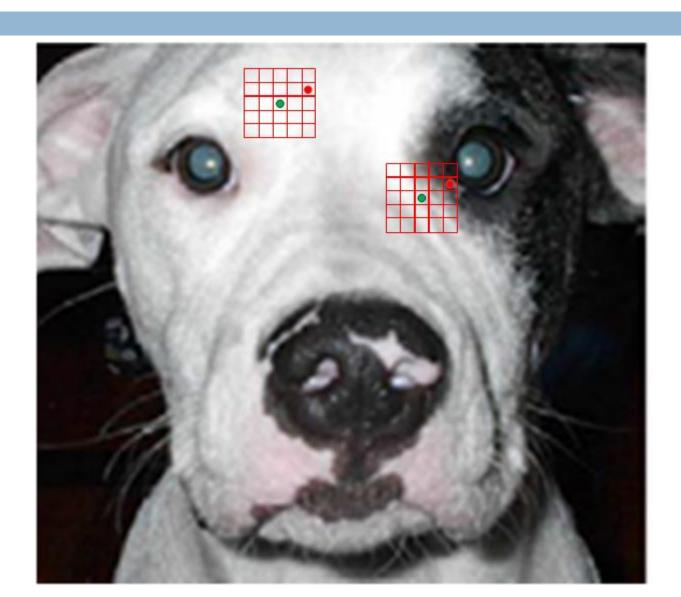
汪汪

Bilateral Filter

$$K(x_i, x_j, y_i, y_j) = \exp\left\{\frac{-\|x_i - x_j\|^2}{h_x^2} + \frac{-\|\mathbf{y}_i - \mathbf{y}_j\|^2}{h_y^2}\right\}$$

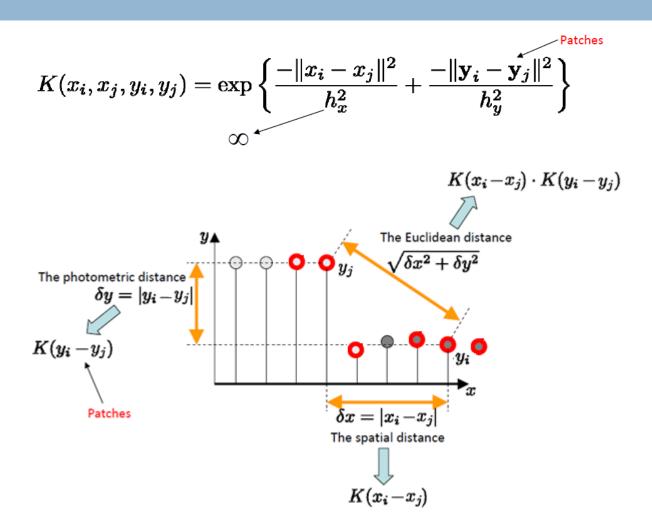


Bilateral Filter

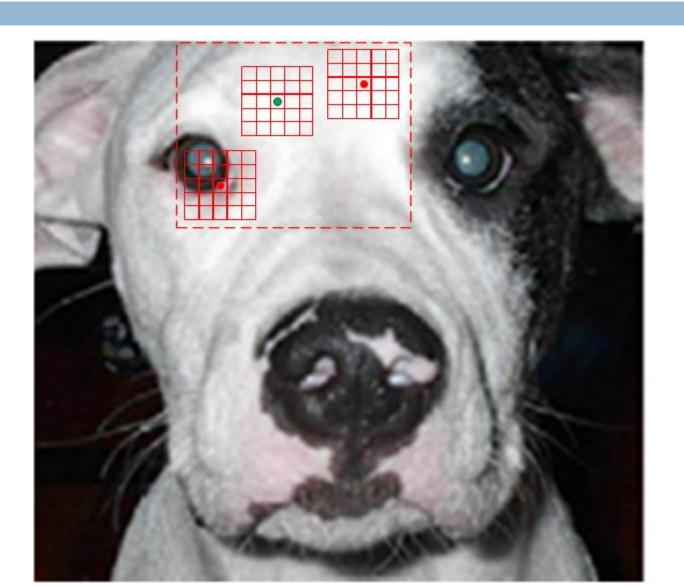


汪汪

Non-local Means



Non-local Means

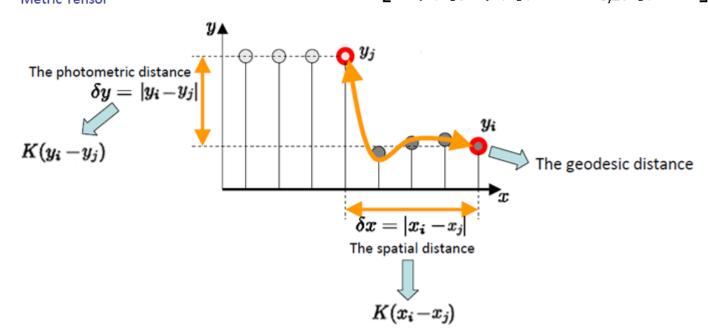


汪汪

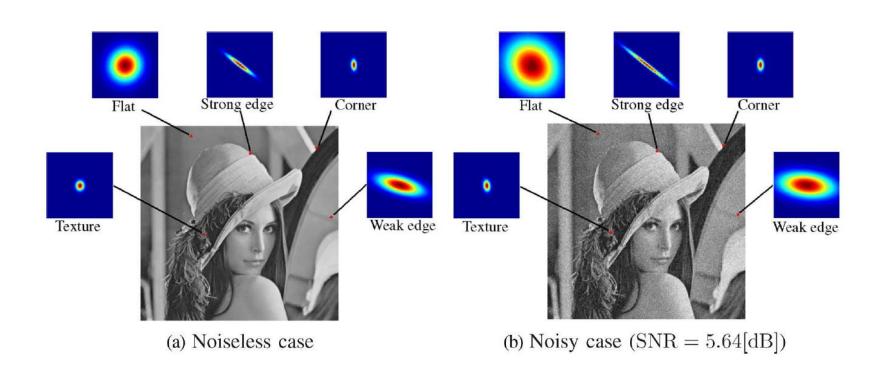
Locally Adaptive Regression Kernels (LARK)

"Learned" (Geodesic) Distance Metric
$$K(x_i,x_j,y_i,y_j) = \exp\left\{-ig(x_i-x_j)^T \mathbf{\widehat{C}}_{ij}(x_i-x_j)
ight\}$$

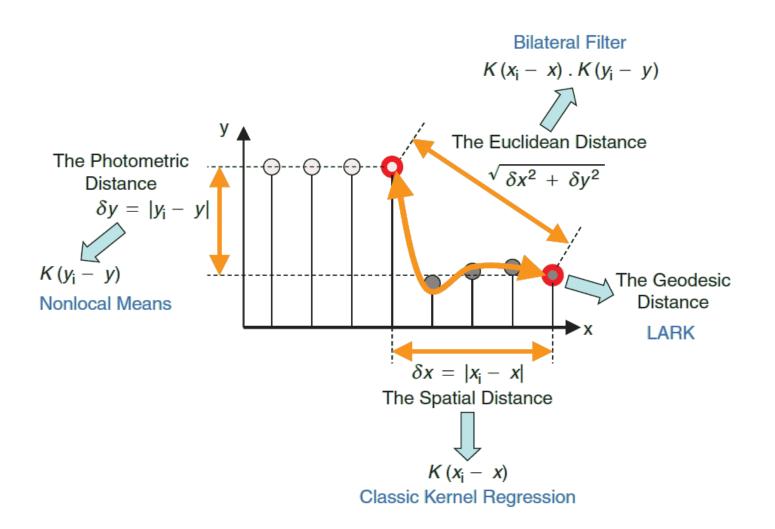
Estimated Local gradient covariance
$$\widehat{\mathbf{C}}_{ij} = \sum_{j} \left[\begin{array}{cc} \widehat{z}_{i,1}^2(x_j) & \widehat{z}_{i,1}(x_j) \widehat{z}_{i,2}(x_j) \\ \\ \text{"Structure Tensor"} \\ \\ \end{array} \right]$$
"Metric Tensor"
$$\widehat{\mathbf{C}}_{ij} = \sum_{j} \left[\begin{array}{cc} \widehat{z}_{i,1}^2(x_j) & \widehat{z}_{i,1}(x_j) \widehat{z}_{i,2}(x_j) \\ \\ \widehat{z}_{i,1}(x_j) \widehat{z}_{i,2}(x_j) & \widehat{z}_{i,2}^2(x_j) \end{array} \right]$$



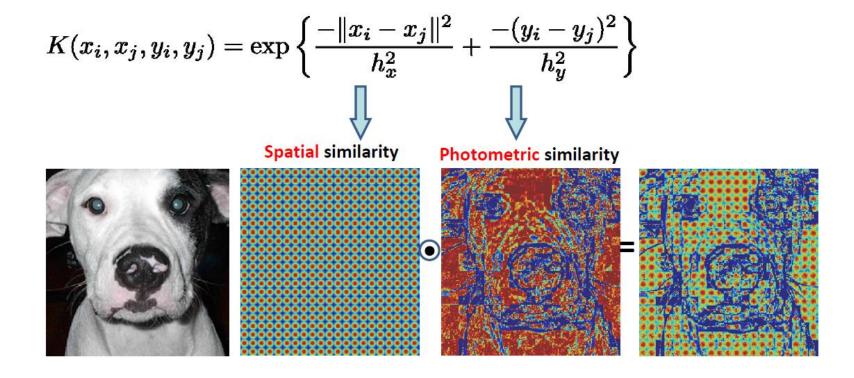
Locally Adaptive Regression (Steering) Kernels



Some Special Cases

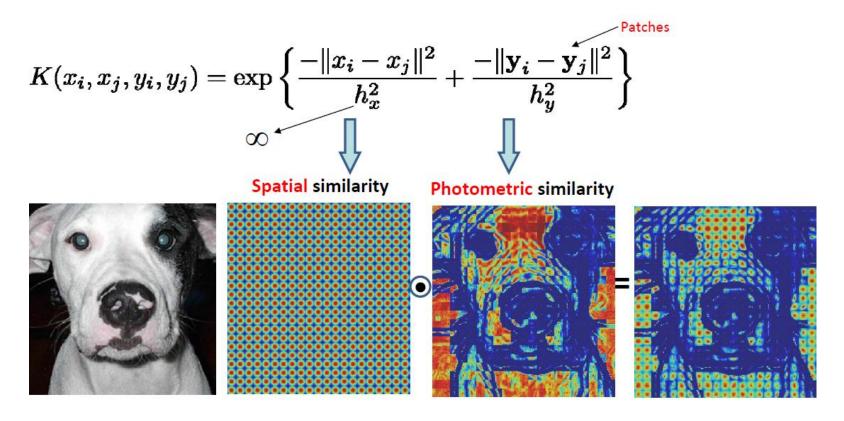


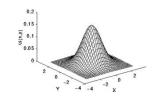
Kernels: Bilateral filter



Shown in non-overlapping patches (for convenience of illustration only)

Kernels: Non-local means





Shown in non-overlapping patches (for convenience of illustration only)

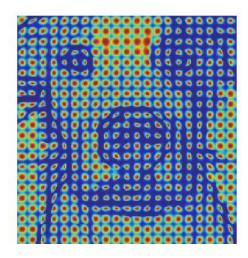
Kernels: LARK

"Learned" (Geodesic) Distance Metric

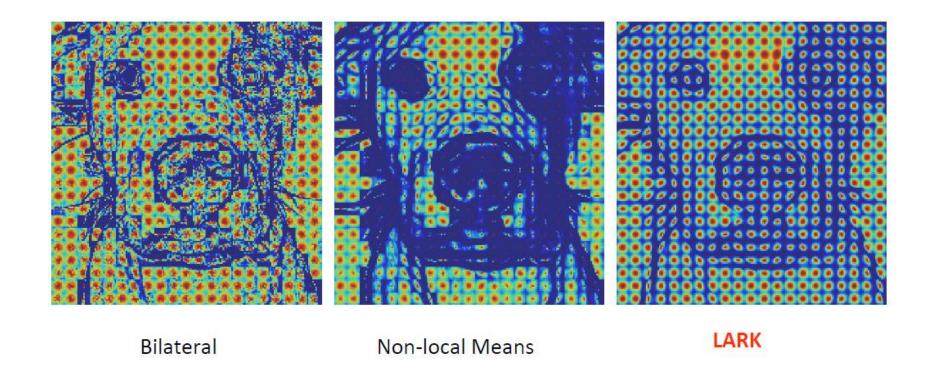
$$K(x_i, x_j, y_i, y_j) = \exp\left\{-(x_i - x_j)^T \widehat{\widehat{\mathbf{C}}}_{ij} (x_i - x_j)
ight\}$$

Estimated Local gradient covariance
$$\widehat{\mathbf{C}}_{ij} = \sum_{j} \begin{bmatrix} \widehat{z}_{i,1}^2(x_j) & \widehat{z}_{i,1}(x_j)\widehat{z}_{i,2}(x_j) \\ \widehat{z}_{i,1}(x_j)\widehat{z}_{i,2}(x_j) & \widehat{z}_{i,2}^2(x_j) \end{bmatrix}$$

"Metric Tensor"



Comparisons



Generalizations (1/2)

• General Gaussian Kernel with $\mathbf{t} = \begin{bmatrix} x \\ \mathbf{y} \end{bmatrix}$

- Classical: $\mathbf{Q}_x = \frac{1}{h_x^2}\mathbf{I}$ and $\mathbf{Q}_y = \mathbf{0}$
- Bilateral: $\mathbf{Q}_x = \frac{1}{h_x^2} \mathbf{I}$ and $\mathbf{Q}_y = \frac{1}{h_y^2} \mathrm{diag}[0, 0, \dots, 1, \dots, 0, 0]$
- Non-local Means: $\mathbf{Q_x} = \mathbf{0}$ and $\mathbf{Q_y} = \frac{1}{h_y^2}\mathbf{G}$
- LARK: $\mathbf{Q}_x = \mathbf{C}_{ij}$ and $\mathbf{Q}_y = \mathbf{0}$.

Generalizations (2/2)

$$K(\mathbf{t}_i, \mathbf{t}_j) = \exp \left\{ -(\mathbf{t}_i - \mathbf{t}_j)^T \mathbf{Q}_{i,j} (\mathbf{t}_i - \mathbf{t}_j) \right\}$$
 $\mathbf{Q}_{i,j} = \begin{bmatrix} \mathbf{Q}_x & \mathbf{0} \\ \mathbf{0} & \mathbf{Q}_y \end{bmatrix}$ Symmetric, positive-definite

Introduce off-diagonal blocks for Q

Define the "feature" vector t more generally

Reproducing Kernels

Original image

Noisy image

Bilateral filtering

LARK

Original image

Compressed image by JPEG with quality of 10

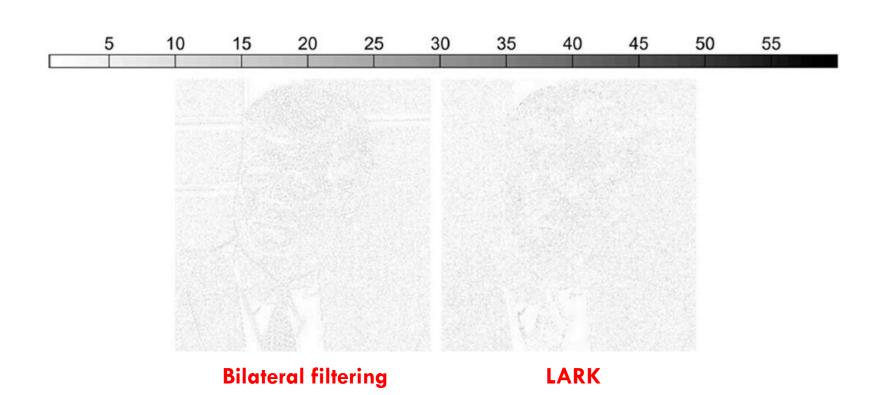
Bilateral filtering

LARK

Noisy image

Bilateral filtering

LARK



 Irregularly sampled data interpolation (85% of the pixels are omitted)

Reference

- Some papers
- □ Web

Thank you for your attention